Supply Chain Information Exchange: Non-conforming & Authentic Components

Joe Jarzombek

Director for Software and Supply Chain Assurance Stakeholder Engagement & Cyber Infrastructure Resilience

Agenda

- Purpose
- Overview
- Community of Interest
- Environment
- Opportunities
- Methodology
- Leveraging Structured Representations to Support Consistency and Automation
- Next Steps

Purpose

- Elicit Stakeholder Collaboration for Security Automation efforts associated with Supply Chain Risk Management:
 - Standardize taxonomies for component conformance to specifications and authenticity
 - Develop standard information sharing mechanisms, such as a "Supply Chain Observable eXpression" language and associated data dictionary

Overview

- The USG and industry partners are working toward solutions to reduce counterfeit information and communications technology (ICT) supply chain risks.
- The USG and industry partners need a scalable means to report and detect ICT supply chain risks attributable to counterfeits, defects, and tainted components (i.e. non-conforming components/parts).
- Existing structured representations can be leveraged to support consistency and automation of reporting and detecting nonconforming components/parts.

Community of Interest

 There are multiple government, industry, and associations who are engaged in counterfeit taxonomies and anti-counterfeiting, at large.
 Below are a sample of said entities:

Government	Industry	Academia and Associations
 MDA DLA FAA US Navy US Army CBP ICE and many others 	 SMT BAE Honeywell American Electronic Resource 	 Center For Hardware Assurance and Security Engineering (CHASE) SAE CALCE University of Maryland ERAI AIA IDEA

Community of Interest (example)

 CHASE strives to unite commercial, academic and government expertise to enhance the nation's hardware assurance and security. Their current and past project sponsors include:

Government

Community of Interest

- What communities have databases for identifying non-conformant components?
 - Government-Industry Data Exchange Program (GIDEP): Cooperative activity between USG and industry participants to reduce resource expenditures by sharing technical information.
 - Joint Deficiency Reporting System (JDRS): Cross-service, webenabled automated tracking system across the Aeronautical Enterprise. designed to initiate, process and track deficiency reports from the Warfighter through the investigation process.
 - ERAI, Inc: Privately held global information services organization that monitors, investigates and reports issues affecting the global semiconductor supply chain.
 - Product Data Reporting and Evaluation Program (PDREP): Product Quality Deficiency Report for the Department of the Navy.
 - Suspected Unapproved Parts (SUP) Program: Used by the Federal Aviation Administration (FAA).

Homeland Security

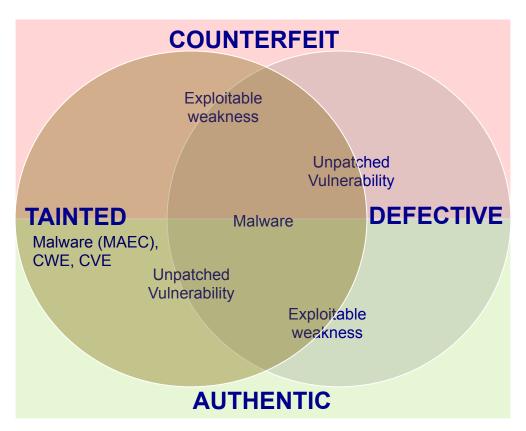
Community of Interest

- What entities currently have counterfeit taxonomies?
 - University of Connecticut Center for Hardware Assurance, Security, and Engineering (CHASE)
 - SAE Standards AS5553 "Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition"
 - Department of the Navy's Product Data Reporting and Evaluation Program (PDREP) Product Quality Deficiency Report
 - Department of Energy Annual Counterfeit Report

Environment

- Departments' and Agencies' (D/A's) counterfeit management programs vary in approach and maturity.
- There are a number of counterfeit databases that are not used to their fullest potential (e.g., GIDEP).
- Various definitions and characterization of counterfeits across the USG complicates the issue (e.g., many quality assurance procedures reflect existing counterfeit standards, but are not explicitly counterfeit guidance).
- The level of sophistication for testing counterfeits varies across D/As.
- The verification of data entered into counterfeit databases and confidence level for testing techniques are unclear.
- Not all D/A's approaches to counterfeits have uniform reporting procedures.
- The majority of D/As may prioritize the inspection of suspect counterfeit items based on factors that include mission criticality.

Opportunities


- Need for a common language for communicating and interacting within the USG (among D/A's) and with industry
- Need for sharing information on authentic components
 - Facilitates research into and detection of non-conforming items
- Need for sharing information on non-conforming components
 - Ability to create repository of searchable data for identification, trend analysis, etc.
- Need to reduce test cost and time
 - Ability to reduce the cost of testing, reporting, and maintaining counterfeit-free components
- Need to encourage OCM-level anti-counterfeiting techniques
 - Most economical method to add track and trace capability to a chip
- Need to establish mechanisms and test flows to benchmark the testing techniques and counterfeit ICs

Methodology

Taxonomy for Conforming & Non-Conforming Components/Parts

- Catalogue Methods for Detection, Testing, and Anti-Counterfeiting
- Build Taxonomies for determining:
 - Authentic components
 - Counterfeit components
 - Defective components
 - Tainted components containing malware (MAEC, exploitable weaknesses (CWE), and known vulnerabilities (CVE)
- Define Observables
- Leverage existing structured representations to 'scale' detection & reporting of counterfeits

Components can become tainted intentionally or unintentionally throughout the supply chain, SDLC, and in Ops & sustainment

*Text demonstrates examples of overlap

After defining 'observables' for each type of non-conformant component (including defective and tainted components), the following enumerations, languages, and schemas would be used to specify extensions that cover counterfeits, authentic components, and defects. These enumerations include:

- CVE to reference vulnerabilities in defective or tainted components (<u>http://cve.mitre.org/</u>)
- CWE to represent weaknesses leading to defective or tainted components (<u>http://cwe.mitre.org/</u>)
- MAEC to represent characterization of malicious logic in tainted components (<u>http://maec.mitre.org/</u>)
- CAPEC to represent approaches in the Counterfeiting taxonomy (<u>http://capec.mitre.org/</u>)
- CybOX to represent observable characteristics for detection/determination of nonconformant components (<u>http://cybox.mitre.org/</u>)
- STIX to represent non-conformant patterns, Anti-counterfeiting approaches and other threat context (<u>http://stix.mitre.org/</u>
- TAXII to enable sharing of actionable cyber threat information across organization and product/service boundaries (<u>http://taxii.mitre.org/</u>)

Next Steps

In moving forward, need to leverage support from engaged stakeholders and harmonize existing counterfeit taxonomies to ensure automation efforts align with industry, academia, and government-wide approaches.

- Formalize taxonomies for conforming and non-conforming parts
- Build-and maintain catalogue of detection & anti-counterfeiting methods and establish mechanisms and test flows to benchmark techniques
- Test ability to create automated tools for observables and identify gaps in existing enumerations and languages
- Specify extensions that covers counterfeits, authentic components, and defects
- Specify relevant data dictionaries to serve as clear description of the expressivity needed (including identifying and filling the gaps between CybOX and SCOX).
- Ensure "XXXX-as-a-Service" supply chain risks are addressed in moving to the Cloud for software, IT, platform, communications and data services
- Ensure automation efforts reduce test cost and time

Homeland Security

Background

Common Attack Pattern Enumeration and Classification (CAPEC)

Community effort targeted at:

- Standardizing the capture and description of attack patterns
- Collecting known attack patterns into an integrated enumeration that can be consistently and effectively leveraged by the community
- Gives you an attacker's perspective you may not have on your own
- Where is CAPEC today?
 - <u>http://capec.mitre.org</u>
 - Currently 386 patterns, stubs, named attacks

Common Attack Pattern Enumeration and Classification (CAPEC)

- The CAPEC structure can be used to characterize common approaches to counterfeiting and tainting.
- Can represent attacker behavior, observables, skills or resources required, mitigations, etc.
- For example, in the draft Counterfeit Taxonomy the Counterfeit/ Alteration/Inserted Malware entry already has a brief CAPEC pattern (CAPEC-441 Malicious Logic Inserted Into Product).
- Current CAPEC Supply Chain Attack taxonomy could easily be modified with the results of the taxonomy work here to refine and extend its value to anti-counterfeiting and SCRM.

Cyber Observable eXpression (CybOX)

- Cyber Observable eXpression (CybOX) is a standardized language for encoding and communicating information about cyber observables (<u>http://cybox.mitre.org</u>)
- A *measurable event* or *stateful property* in the cyber domain
 - Some measurable events: a registry key is created, a file is deleted, an http GET is received, …
 - Some stateful properties: MD5 hash of a file, value of a registry key, existence of a mutex, …
- CybOX provides Expressivity:
 - Very flexible -- can express both instances and patterns
 - Large number of objects defined and is user-extensible
 - Each object has a rich set of (optional) properties
 - Object patterns can be expressed as arbitrary Boolean expressions using AND, OR, NOT and at the field level with a range of patterning conditions

Cyber Observable eXpression (CybOX)

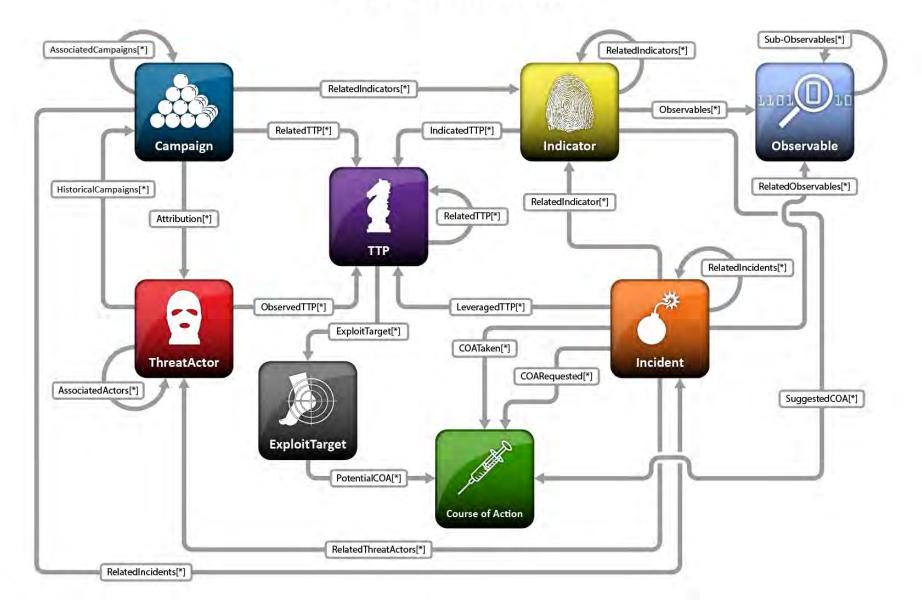
- CybOX can be leveraged to explicitly specify the observable patterns for what "counterfeit" and what "real" look like
 - These patterns could then be used within Indicators of what to look for and as adornments to relevant CAPEC attack patterns
- CybOX can also be used to capture actual "instantial" observations of observable properties
 - This could support the capture of test/inspection results
- Capturing the patterns and the "instantial" results in the same language simplifies the ability to match against the patterns

Cyber Observable eXpression (CybOX) for SCRM/Anti-Counterfeiting

- CybOX currently contains ~80 defined Objects including objects that can convey some of the relevant properties (Product, Device, etc.) for the SCRM/Anti-Counterfeiting use cases
- The core of CybOX is built to provide basic "observable" expressivity independent of specific Objects or Actions.
 - Because of this, it can easily be extended with new Objects or Actions
- CybOX is/will continue to be primarily focused on Cyber Domain
 - This does not mean that it can not be leveraged as a basis for other domain-specific representations
 - CybOX is a common schema shared among MAEC (for Malware), CAPEC (for Attack Patterns), CEE (Events), and Digital Forensics
- The SCRM/Anti-Counterfeiting community could define its own domainspecific language based on CybOX to enable characterization of all relevant observable properties

Cyber Observable eXpression (CybOX) for SCRM/Anti-Counterfeiting

- The CybOX Product Object currently captures Name, Vendor, Version, Edition, etc.
- The CybOX Device Object currently captures Manufacturer, Model, Serial Number, etc.
- A wide range of other Objects cover much of the digital landscape.
- SCRM-specific Object could easily derive from these objects and add structures for characterizing things like packaging, anti-tamper, hardware-specific properties, etc.
- New Objects could also be created for non-CybOX, SCRM-specific constructs like Chip, Circuit, Boards, etc.


Structured Threat Information eXpression (STIXTM)

- Structured Threat Information eXpression (STIX[™]) is a collaborative communitydriven effort to define and develop a standardized *language* to represent structured cyber threat information. See http://stix.mitre.org/
 - The STIX Language intends to convey the full range of potential cyber threat information and strives to be fully expressive, flexible, extensible, automatable, and as human-readable as possible.
 - All interested parties are welcome to participate in evolving STIX as part of its open, collaborative community.
 - It is NOT a sharing program, database, or tool ...but supports all of those uses and more
- Trusted Automated eXchange of Indicator Information (TAXII™) is the main transport mechanism for cyber threat information represented as STIX. Through the use of TAXII services, organizations can share cyber threat information in a secure and automated manner.
- Supports
 - Clear understandings of cyber threat information
 - Consistent expression of threat information
 - Automated processing based on collected intelligence
 - Advance the state of practice in threat analytics

Structured Threat Information eXpression (STIX) v1.0 Architecture

Structured Threat Information eXpression (STIXTM)

- Leveraging Indicators to represent targeted patterns of concern (i.e. what to look for)
- Leveraging CVE & CWE within Exploit Targets to convey underlying issues in processes and products
- Leveraging CAPEC within TTP to convey counterfeiting and tainting approaches and give context to Indicators
- Leveraging Incidents to characterize instances of counterfeiting/tainting
- Leveraging Threat Actors to convey parties doing counterfeiting and tainting
- Leveraging Courses of Action to convey anti-counterfeiting approaches and taint/defect mitigations

Structured Threat Information eXpression (STIXTM) Usage Example for SCRM

- Incident
 - Acme router found with counterfeit/altered malware-injected OS code
- Indicator
 - Immediately deploy Indicators with pattern for specific hash of the OS code
- COA
 - Test all such deployed routers for the Indicators
 - Remove all tainted routers from operations and submit for forensic analysis
 - Investigate supply chain provenance to detect how code was injected
- TTP
 - CAPEC-447: Malicious Logic Insertion into Product Software during Update
- Exploit Target
 - CWE-494: Download of Code Without Integrity Check

Homeland Security

Structured Threat Information eXpression (STIXTM) Usage Example for SCRM

- COA
 - Integrate integrity check into router software update process
- Threat Actor
 - Through forensic/incident analysis a commercial proxy for a certain nation state is identified as the culprit
- Campaign
 - Through cross-incident and TTP analysis, a campaign is discovered with this Threat Actor using similar TTP to target a particular set of victims on not limited to Acme routers
- Indicator
 - More general Indicators are developed and deployed to targeted victims that are not specific to the particular Acme tainting

